PARSING WITH PARADIGMS
A Relational-Realizational Architecture for Specifying and Learning Morphosyntactic Descriptions

Reut Tsarfaty
The Department of Linguistics and Philology
Uppsala University

QUANTITATIVE MEASURES IN MORPHOLOGY AND MORPHOLOGICAL DEVELOPMENT
University of California, San Diego
January 15-16, 2011
Morphology and Syntax

"Morphology deviates in a number of important ways from the classical picture of word structure as simply the combinatory syntax of morphemes. [As we have seen,] morphology is best seen as a system that describes relations among word structural types in terms of the way the forms of words realize the properties that compose their content."

"In fact [...] much of what we normally think of as clearly part of syntax seems to have some of this same character. [...] Rather than being exclusively matters of the construction and manipulation of hierarchical constituent structure, a number of areas usually considered syntactic in character also turn out to be realizational, relational, and governed by a system of constraints rather than (solely) by rules of X-structure, displacement, and other manipulations of phrasal structure." (Anderson 2004)
Morphology and Syntax

“Morphology deviates in a number of important ways from the classical picture of word structure as simply the combinatory syntax of morphemes. [As we have seen,] morphology is best seen as a system that describes relations among word structural types in terms of the way the forms of words realize the properties that compose their content.”

“In fact [...] much of what we normally think of as clearly part of syntax seems to have some of this same character. [...] Rather than being exclusively matters of the construction and manipulation of hierarchical constituent structure, a number of areas usually considered syntactic in character also turn out to be realizational, relational, and governed by a system of constraints rather than (solely) by rules of X-structure, displacement, and other manipulations of phrasal structure.” (Anderson 2004)
My Contribution

The Idea
Applying the principles underlying W&P models to syntax

The Proposal
A Relational-Realizational (RR) modeling architecture

The Outcome
- Useful: Parsing less-configurational languages
- Interesting: Quantifying typological parameters
The Plan for Today

The Task:
Statistical Parsing

The Challenge:
Complex Form-Function Correspondence

The Method:
Following the footsteps of Morphology

The Proposal:
A Relational-Realizational Approach

⇒ A Stepping Stone
Towards computational typology and statistical UG
Part 1: The Task

Statistical Parsing
Statistical Parsing

"This is easy"
Statistical Parsing

"This is easy"
Statistical Parsing

S
 NP-SBJ VP-PRD
 PRP VB ADJP
 “This” “is” ADJ
 “easy”
Statistical Parsing

S

NP-SBJ

NP-SBJ

PRP

"This"

VP-PRD

VP-PRD

VB

VB

"is"

ADJP

ADJP

ADJ

ADJ

"easy"
Constituency-Based Supervised Statistical Parsing

Model Study F-Score

- Treebank Charniak 75
- Grammar 1996
- Head-Driven Collins 1997 88.6
- Discriminative Collins 2000 89.7
- Reranking
- Discriminative Johnson & Charniak 2005 91.0
- Reranking McClosky 92.1 2006
- Self-Training
- State-Splits Petrov et al 90.1 2007
- Forest Liang Huang 91.7 2008
- Reranking
Constituency-Based Supervised Statistical Parsing

And what about this?

And this?

And this?

And this?

<table>
<thead>
<tr>
<th>Language</th>
<th>Parser</th>
<th>F-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>German</td>
<td>Rafferty & Manning 2008</td>
<td>79.2</td>
</tr>
<tr>
<td>Czech</td>
<td>Collins et al. 1999</td>
<td>79.3</td>
</tr>
<tr>
<td>Chinese</td>
<td>Levy & Manning 2003</td>
<td>78.8</td>
</tr>
<tr>
<td>Arabic</td>
<td>Maamouri, Bies & Kulick 2008</td>
<td>78.1</td>
</tr>
<tr>
<td>Hebrew</td>
<td>Tsarfaty & Sima’an 2007</td>
<td>74.4</td>
</tr>
</tbody>
</table>

And? ...
So What Is Going On?

Often Considered

- **Corpora Size**
 E.g., For *Chinese* (Bikel & Chiang 2000)

- **Annotation Idiosyncrasies**
 E.g., For *Arabic* (Maamouri, Bies & Kulick 2008, 2009)

- **Evaluation Matters**
 E.g., For *German* (Rehiben & van Genabith 2007, Kübler 2008)
So What Is Going On?

Often Considered

- Corpora Size
 E.g., For *Chinese* (Bikel & Chiang 2000)

- Annotation Idiosyncrasies
 E.g., For *Arabic* (Maamouri, Bies & Kulick 2008, 2009)

- Evaluation Matters
 E.g., For *German* (Rehiben & van Genabith 2007, Kübler 2008)

Not so often..

- Parsers’ Parameterization

- Language Variation
Parsers’ Parameterization

"He likes her" = P(NP VP | S) × ... × P("her" | PRP .ACC) = 0.25
Parsers’ Parameterization

\[
P(\text{NP VP}|S) \times \ldots \times P(\text{"her"}|\text{PRP.ACC}) = 0.25
\]
Parsers’ Parameterization

P(“Her likes he”) = P(NP VP|S) × ... × P(“her”|PRP.ACC) = 0.25
Example 1: Parent Encoding (Johnson 1998)

S

NP@S

PRP.NOM

“He”

VP@S

VB

“likes”

NP@VP

PRP.ACC

“her”

⇒

P(NP@S VP@S | S) 1
P(PRP.NOM | NP@S) 1
P(PRP.ACC | NP@VP) 1
P(VB NP@VP | VP@S) 1

P(”He” | PRP.NOM) 1
P(”likes” | VP) 1
P(”her” | PRP.ACC) 1
Example 1: Parent Encoding (Johnson 1998)

P(NP@S VP@S|S) 1
P(PRP.NOM |NP@S) 1
P(PRP.ACC |NP@VP) 1
P(VB NP@VP| VP@S) 1
P(”He”|PRP.NOM) 1
P(”likes”|VP) 1
P(”her”|PRP.ACC) 1
Example 2: Head-Driven Processes (Collins 1999)

\[
\begin{align*}
\Rightarrow & \\
& P(<VB>|S) & 1 \\
& P(L\Delta_{L_1}, H\Delta_0|<VB>, S) & 1 \\
& P(PRP.NOM|L, \Delta_{L_1}, <VB>, S) & 1 \\
& P(VP|H, \Delta_0, <VB>, S) & 1 \\
& P(<VB>|VP) & 1 \\
& P(PRP.ACC|R, \Delta_{R_1}, <VB>, S) & 1 \\
& P(VB|H, \Delta_0, <VB>, S) & 1 \\
& P("He"|PRP.NOM) & 1 \\
& P("likes"|VB) & 1 \\
& P("her"|PRP.ACC) & 1
\end{align*}
\]
Example 2: Head-Driven Processes (Collins 1999)

$$\Rightarrow$$

- $P(<\text{VB}|S)$ 1
- $P(\text{L}, \Delta_{L_1}, \text{H}, \Delta_0|<\text{VB}, S)$ 1
- $P(\text{PRP.NOM}|\text{L}, \Delta_{L_1},<\text{VB}, S)$ 1
- $P(\text{VP}|\text{H}, \Delta_0, <\text{VB}, S)$ 1
- $P(<\text{VB}|\text{VP})$ 1
- $P(\text{PRP.ACC}|\text{R}, \Delta_{R_1}, <\text{VB}, S)$ 1
- $P(\text{VB}|\text{H}, \Delta_0, <\text{VB}, S)$ 1
- $P(\"\text{He}\"|\text{PRP.NOM})$ 1
- $P(\"\text{likes}\"|\text{VB})$ 1
- $P(\"\text{her}\"|\text{PRP.ACC})$ 1
An Observation

- Parsers for configurational languages:
 - Parameters use configurations to approximate functions
- Parsers for less-configurational languages:
 - Parameters need to explicitly relate functions to forms

A Question

What kind of form-function correspondence patterns our parser needs to learn from the data?
Part 2: The Challenge

Modeling Form-Function Correspondence
Language Types

Typological Dimensions of Variation

Basic Word-Order Typology (Greenberg 1966, Mithun 1992)

Morphological Typology (Sapir 1921, Greenberg 1954)

Nonconfigurality (Hale 1983, Austin and Bresnan 1996)
Language Types

Typological Dimensions of Variation

Basic Word-Order Typology
(Greenberg 1966, Mithun 1992)

Morphological Typology
(Sapir 1921, Greenberg 1954)

Nonconfigurationality
(Hale 1983, Austin and Bresnan 1996)
Nonconfigurationality as Misalignment

Predicate-Argument Relations

‘SBJ’ did ‘PRD’ to ‘OBJ’

Syntactic Configuration

```
S
  NP  VP
   PRP.NOM VB NP
   "He"  "likes"  'her'
```
Nonconfigurationality as Misalignment

Predicate-Argument Relations

‘SBJ’ did ‘PRD’ to ‘OBJ’

Configurational Languages

```
(He) likes her
```

Diagram:
```
S
  /   \  
NP    VP
  |    |
PRP.NOM VB NP
  |   |
   "He" "likes" NN.ACC
       |       |
       "her"
```
Nonconfigurationality as Misalignment

Predicate-Argument Relations

‘SBJ’ did ‘PRD’ to ‘OBJ’

Less-Configurational Languages
Morphosyntactic Exponence in Hebrew

Word-Order

(1)

a. dani natan et hamatana ledina
 Dani gave ACC the-present to-Dina
 “Dani gave the present to Dina” (SVO)

b. et hamatana natan dani ledina
 ACC the-present gave Dani to-Dina
 “Dani gave the present to Dina” (OVS)

c. natan dani et hamatana ledina
 gave Dani ACC the-present to-Dina
 “Dani gave the present to Dina” (VSO)

d. ledina natan dani et hamatana
 to-dina gave Dani ACC the-present
 “Dani gave the present to Dina” (VSO)
Exponence Relations in Hebrew (1:1)

Case-Assigning Prepositions

(2)
a. dani natan et hamatana ledina
 Dani gave ACC DEF-present DAT-Dina

b. et hamatana natan dani ledina
 ACC DEF-present gave Dani DAT-Dina

c. natan dani et hamatana ledina
 gave Dani ACC DEF-present DAT-Dina

d. ledina natan dani et hamatana
 DAT-dina gave Dani ACC DEF-present
Exponent Relations in Hebrew (1:many)

Differential Object-Marking

(3) a. dani natan et hamatana ledina
 Dani gave ACC DEF-present to-Dina

b. et hamatana natan dani ledina
 ACC DEF-present gave Dani to-Dina

c. natan dani et hamatana ledina
 gave Dani ACC DEF-present to-Dina

d. ledina natan dani et hamatana
 to-dina gave Dani ACC DEF-present
Exponence Relations in Hebrew (1:many)

Feature Spreading (Danon, 2007)

(4) a. dani natan [et matnat yom hahuledet] ledina
Dani gave [ACC present day DEF-birth] to-Dina

b. [et matnat yom hahuledet] natan dani ledina
[ACC present day DEF-birth] gave Dani to-Dina

c. natan dani [et matnat yom hahuledet] ledina
 gave Dani [ACC present day DEF-birth] to-Dina

d. ledina natan dani [et matnat yom hahuledet]
to-dina gave Dani [ACC present day DEF-birth]
Exponence Relations in Hebrew (1:many)

Agreement

(5) a. dani natan et hamatana ledina
 Dani.MS gave.3MS ACC DEF-present DAT-Dina

b. et hamatana natan dani ledina
 ACC DEF-present gave.3MS Dani.MS DAT-Dina

c. natan dani et hamatana ledina
gave.MS Dani.3MS ACC DEF-present DAT-Dina

d. ledina natan dani et hamatana
 DAT-dina gave.3MS Dani.MS ACC DEF-present
Exponence Relations in Hebrew (many:1)

Clitics and Null Anaphors

(6) a. dani natan et hamatana ledina
 Dani.MS gave.3MS ACC DEF-present DAT-Dina
 “Dani gave the present to Dina”

 b. natati et hamatana ledina
 gave.1S ACC DEF-present DAT-Dina
 “I gave the present to Dina”

 c. natatiha ledina
 gave.1S.ACC.3FS DAT-Dina
 “I gave it to Dina”
Recap:

CONFIGURATIONAL —— **NONCONFIGURATIONAL**

1:1 ———————————— many : many

▶ Exponence relations relate grammatical functions to the formal means that realize them in the syntactic structure

▶ Configurationality is a special case of a 1:1 mapping between grammatical functions to configurational positions

Question:

How can we model and statistically learn generally complex, many-to-many, form-function correspondence in syntax?
Part 3: The Proposal

Following the footsteps of morphology
Modeling Morphology (i): Terminology

Morphological Exponence (Matthews 1991)
- Simple Exponence (1:1)
- Cumulative Exponence (many:1)
- Extended Exponence (1:many)

Morpheme-Based Morphology (Bloomfield, 1933)

- ‘kid’ , ‘s’ , ‘ox’ , ‘en’ , ‘m..n’ , ‘e’ , ‘sheep’ , ∅
- KID plural OX plural MAN plural SHEEP plural
LEXICAL vs. INFERENTIAL Approaches

- LEXICAL: morphemes are primary, properties stored in the lexicon
- INFERENTIAL: properties are primary, forms are computed

INCREMENTAL vs. REALIZATIONAL Approaches

- INCREMENTAL: morphemes/properties are accumulated incrementally
- REALIZATIONAL: property-bundles are pre-condition for spell-out
Modeling Morphology (III): A Taxonomy

<table>
<thead>
<tr>
<th>Incremental</th>
<th>Lexical</th>
<th>Inferential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item & Arrangement</td>
<td>(Bloomfield 1933)</td>
<td>Item & Processes</td>
</tr>
<tr>
<td></td>
<td>(Lieber 1992)</td>
<td>(Hocket 1954)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Steele 1995)</td>
</tr>
<tr>
<td>Realizational</td>
<td>Distributed Morphology</td>
<td>(Extended) Word & Paradigm</td>
</tr>
<tr>
<td></td>
<td>(Halle and Marantz 1993)</td>
<td>(Matthews 1972), (Anderson 1992)</td>
</tr>
<tr>
<td></td>
<td>Lexical Phonology</td>
<td>(Stump 2001), (Blevins 2006)</td>
</tr>
</tbody>
</table>

Table: A Taxonomy of Models for Morphology (Stump 2001)
The Strategy (IV): (Extended) Word-and-Paradigm

Paradigmatic Organization

<table>
<thead>
<tr>
<th></th>
<th>1Sing</th>
<th>2Sing</th>
<th>3Sing</th>
<th>1Pl</th>
<th>2Pl</th>
<th>3Pl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Past</td>
<td>1SingPast</td>
<td>2SingPast</td>
<td>3SingPast</td>
<td>1PlPast</td>
<td>2PlPast</td>
<td>3PlPast</td>
</tr>
<tr>
<td>Present</td>
<td>1SingPres</td>
<td>2SingPres</td>
<td>3SingPres</td>
<td>1PlPres</td>
<td>2PlPres</td>
<td>3PlPres</td>
</tr>
<tr>
<td>Perfect</td>
<td>1SingPerf</td>
<td>2SingPerf</td>
<td>3SingPerf</td>
<td>1PlPerf</td>
<td>2PlPerf</td>
<td>3PlPerf</td>
</tr>
</tbody>
</table>

Realization Rules

- /EAT/, /EAT/, /EAT/, /EAT/, /EAT/
- +1SingPast, +3SingPast, +1SingPres, +3SingPres
- ‘ate’, ‘ate’, ‘eats’, ‘eat’
The Proposal (I): “Lifting” the Terminology

Morphological Exponence: Properties \rightsquigarrow Words

- Simple (1:1)
- Cumulative (many:1)
- Distributed/Extended (1:many)

Morphosyntactic Exponence: Relations \rightsquigarrow Positions

- Simple (1:1, e.g., SBJ \rightsquigarrow nominative)
- Cumulative (many:1, e.g., PRD,OBJ \rightsquigarrow clitics)
- Distributed/Extended (1:many, e.g., SBJ \rightsquigarrow agreement)
The Proposal (II): Modeling Assumptions

CONFIGURATIONAL vs. RELATIONAL Approaches

- **CONFIGURATIONAL:**
 configurations are primary, relations are derived

- **RELATIONAL:**
 relations are primary, configurations are computed

INCREMENTAL vs. REALIZATIONAL Approaches

- **INCREMENTAL:**
 constructive operations,
 incrementally define/add relations

- **REALIZATIONAL:**
 interpretive operations,
 sets of relations are precondition to realization
The Proposal (III): A Taxonomy

<table>
<thead>
<tr>
<th></th>
<th>CONFIGURATIONAL</th>
<th>RELATIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCREMENTAL</td>
<td>X-Bar Theory</td>
<td>Dependency Grammar</td>
</tr>
<tr>
<td></td>
<td>Head-Driven Grammars</td>
<td></td>
</tr>
<tr>
<td>REALIZATION</td>
<td>Tree Adjoining Grammar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Combinatory-Categorial Grammar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construction Grammar</td>
<td></td>
</tr>
</tbody>
</table>

Table: A Taxonomy of Syntactic Frameworks (Tsarfaty 2010)
The Proposal (III): A Taxonomy

<table>
<thead>
<tr>
<th></th>
<th>CONFIGURATIONAL</th>
<th>RELATIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCREMENTAL</td>
<td>X-Bar Theory</td>
<td>Dependency Grammar</td>
</tr>
<tr>
<td></td>
<td>Head-Driven Grammars</td>
<td></td>
</tr>
<tr>
<td>REALIZATIONAL</td>
<td>Tree Adjoining Grammar</td>
<td>⟨ This Work ⟩</td>
</tr>
<tr>
<td></td>
<td>Combinatory-Categorial Grammar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construction Grammar</td>
<td></td>
</tr>
</tbody>
</table>

Table: A Taxonomy of Syntactic Frameworks (Tsarfaty 2010)
The Proposal (IV): Relational-Realizational Modeling

The *Relational* Assumption

- Paradigms organize the syntactic domain
- Cells in paradigms define sets of relations
- Sets of relations are realized in different configurations

The *Realizational* Assumption

- Sets of relations (Arg-St) are primitives
- Rules interpret sets of relations as surface forms
- Rules can refer to multiple relations and span clauses

Realization in Syntax is Recursive!

Realization of a cells refers to function cells in other paradigms
The Proposal (IV): Relational-Realizational Modeling

<table>
<thead>
<tr>
<th>ARG-ST</th>
<th>S\langle PRED\rangle FEATS</th>
<th>Affirmative</th>
<th>Interrogative</th>
<th>Imperative</th>
</tr>
</thead>
<tbody>
<tr>
<td>intransitive</td>
<td>S_{affirm}+{SBJ,PRD}</td>
<td>S_{inter}+{SBJ,PRD}</td>
<td>S_{imper}+{SBJ,PRD}</td>
<td></td>
</tr>
<tr>
<td>transitive</td>
<td>S_{affirm}+{SBJ,PRD,OBJ}</td>
<td>S_{inter}+{SBJ,PRD,OBJ}</td>
<td>S_{imper}+{SBJ,PRD,OBJ}</td>
<td></td>
</tr>
<tr>
<td>ditransitive</td>
<td>S_{affirm}+{SBJ,PRD,OBJ,COM}</td>
<td>S_{inter}+{SBJ,PRD,OBJ,COM}</td>
<td>S_{imper}+{SBJ,PRD,OBJ,COM}</td>
<td></td>
</tr>
</tbody>
</table>

Figure: Paradigmatic Organization

\[S_{affirm}+\{SBJ,PRD,OBJ,COM\} \]

Figure: Realization Rules

\[\langle \text{Dani, natan, et hamatana, ledina} \rangle \text{ Dani gave ACC-the-present to-Dina} \]

\[\langle \text{et hamatana, natan, Dani, ledina} \rangle \text{ ACC-the-present gave Dani to-Dina} \]
Realization Rules
Realization Rules

Segmentation and Classification

S

NP-SBJ

dani
Dani

VB-PRD

natan
gave

ADVP

etmol
yesterday

NP_{Def+Acc}-OBJ

et hamatana
Acc Def-present

PP-COM

Iedina
to Dina
Realization Rules

Form-Function Separation

S

{SBJ,PRD,OBJ,COM}@S

NP

VB

ADVP

NP_{Def+Acc}

PP

dani

natan
gave

etmol

yesterday

et hamatana
Acc Def-present

ledina
to Dina
Realization Rules

Morphological and Syntactic Realization

S

{SBJ, PRD, OBJ, COM}@S

SBJ@S

PRD@S

PRD:OBJ@S

OBJ@S

COM@S

NP

VB

ADVP

PP

dani

natan
gave

etmol

et hamatana

ledina
to Dina

Acc Def-present

Acc Def-present

Acc Def-present
Realization Rules: Economy and Generalization

S

{PRD,SBJ,OBJ,COM}@S

SBJ@S
NP
dani
Dani

PRD@S
VB
natan
gave

PRD:OBJ@S
ADVP
etmol
yesterday

OBJ@S
NP_{Def,Acc}
et hamatana
Acc Def-present

COM@S
PP-COM
ledina
to Dina

S

{PRD,SBJ,OBJ,COM}@S

OBJ@S
NP_{Def,Acc}
et hamatana
Acc Def-present

PRD@S
VB
natan
gave

PRD:OBJ@S
ADVP
etmol
yesterday

SBJ@S
NP
dani
Dani

COM@S
PP-COM
ledina
to Dina
The Generative Model

Projection:

\[
P \{gr_i\}_{i=1}^n \odot P
\]

Configuration:

\[
\{gr_i\}_{i=1}^n \odot P
\]

Realization:

\[
gr_1 \odot P \quad gr_1 : gr_2 \odot P \quad \ldots \quad gr_n \odot P
\]

\[
C_1 \quad \ldots \quad C_{1:2} \ldots \quad C_n
\]
The Probabilistic Model

The RR Probabilities:

\[P_{RR}(r) = \]

Projection \[P_p(\{gr_i\}_{i=1}^n | P) \times \]

Configuration \[P_c(\langle gr_0 : gr_1, g_1, \ldots \rangle | \{gr_i\}_{i=1}^n, P) \times \]

Realization \[\prod_{i=1}^n P_{r_1}(C_i | gr_i, P) \times \]

\[P_{r_2}(\langle C_{0_1}, \ldots, C_{0_{m_0}} \rangle | gr_0 : gr_1, P) \times \]

\[\prod_{i=1}^n P_{r_2}(\langle C_{i_1}, \ldots, C_{i_{m_i}} \rangle | gr_i : gr_{i+1}, P) \]

The RR Parser:

\[\pi^* = \arg\max_{\pi} P(\pi) = \arg\max_{\pi} \prod_{r \in \pi} P_{RR}(r) \]
Part IV: Applications

- Parsing Modern Hebrew
- Quantifying Universal Grammar
Application I: Parsing Modern Hebrew

Data
The Modern Hebrew Treebank v2, head annotated. 6500 sentences, 500/5500/500 dev/train/test split

Models
- Grammatical Functions: PRD, SBJ, OBJ, COM, CNJ
- Morphological Splits: PoS/Def/Acc/Gender

Estimation
Relative Frequency + Simple Unknown Words Smoothing

Parsing
Exhaustive Viterbi Parsing (using BitPar, Schmid 2004)

Evaluation
PARSEVAL (i) Overall, and (ii) Per Category Evaluation
A Taxonomy of PCFG-based Parsers

<table>
<thead>
<tr>
<th></th>
<th>CONFIGURATIONAL</th>
<th>REALATIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCREMENTAL</td>
<td>Head-Driven Parsing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Collins 1999)</td>
<td></td>
</tr>
<tr>
<td>REALIZATIONAL</td>
<td></td>
<td>Relational-Realizational</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Tsarfaty et al. 2009)</td>
</tr>
</tbody>
</table>

Table: A Taxonomy of PCFG-Based Parsing Frameworks
<table>
<thead>
<tr>
<th></th>
<th>Overall Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>74.66/74.35</td>
</tr>
<tr>
<td></td>
<td>(7385)</td>
</tr>
<tr>
<td></td>
<td>73.52/74.84</td>
</tr>
<tr>
<td></td>
<td>(21399)</td>
</tr>
<tr>
<td></td>
<td>76.32/76.51</td>
</tr>
<tr>
<td></td>
<td>(13618)</td>
</tr>
</tbody>
</table>
Overall Results

74.66/74.35 (7385)

73.52/74.84 (21399)

76.32/76.51 (13618)
Results Per Category

<table>
<thead>
<tr>
<th>Category</th>
<th>First Model</th>
<th>Second Model</th>
<th>Third Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>77.39 / 74.32</td>
<td>77.94 / 73.75</td>
<td>78.96 / 76.11</td>
</tr>
<tr>
<td>PP</td>
<td>71.78 / 71.14</td>
<td>71.83 / 69.24</td>
<td>74.4 / 72.02</td>
</tr>
<tr>
<td>SBAR</td>
<td>55.73 / 59.71</td>
<td>53.79 / 57.49</td>
<td>57.97 / 61.67</td>
</tr>
<tr>
<td>ADVP</td>
<td>71.37 / 77.01</td>
<td>72.52 / 73.56</td>
<td>73.57 / 77.59</td>
</tr>
<tr>
<td>ADJP</td>
<td>79.37 / 78.96</td>
<td>78.47 / 77.14</td>
<td>78.69 / 78.18</td>
</tr>
<tr>
<td>S</td>
<td>73.25 / 79.07</td>
<td>71.07 / 76.49</td>
<td>72.37 / 78.33</td>
</tr>
<tr>
<td>SQ</td>
<td>36.00 / 32.14</td>
<td>30.77 / 14.29</td>
<td>55.56 / 17.86</td>
</tr>
<tr>
<td>PREDP</td>
<td>36.31 / 39.63</td>
<td>44.74 / 39.63</td>
<td>44.51 / 46.95</td>
</tr>
</tbody>
</table>
Results Using Gold Standard Input

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>83.06</td>
<td>83.49</td>
</tr>
<tr>
<td>(5914)</td>
<td>(6688)</td>
<td></td>
</tr>
<tr>
<td>gender</td>
<td>82.18</td>
<td>83.70</td>
</tr>
<tr>
<td>(10765)</td>
<td>(10063)</td>
<td></td>
</tr>
<tr>
<td>case/def</td>
<td>79.53</td>
<td>83.66</td>
</tr>
<tr>
<td>(12700)</td>
<td>(12386)</td>
<td></td>
</tr>
<tr>
<td>gender/case/def</td>
<td>80.89</td>
<td>84.13</td>
</tr>
<tr>
<td>(13028)</td>
<td>(13618)</td>
<td></td>
</tr>
</tbody>
</table>
Application II: Probabilistic Computational Typology

1: Apply the model to different languages, e.g.,
 - Hebrew: a Semitic Language
 - Swedish: a Germanic Language

2: Learn the distribution of model parameters
 - RR-Projection
 - RR-Configuration
 - RR-Realization

3: Instantiate typological parameters for UG
Application II: Probabilistic Computational Typology

1: Apply the model to different languages, e.g.,

- **Hebrew**: a Semitic Language
- **Swedish**: a Germanic Language

2: Learn the distribution of model parameters

- RR-Projection
- RR-Configuration
- RR-Realization

3: Instantiate typological parameters for UG
Parameter 1: Basic Word-Order (Greenberg 1963)

Basic Word-Order Parameter in Hebrew:
\(P(< configuration > | \{ \text{SBJ,PRD,OBJ}\}@S)\)

<table>
<thead>
<tr>
<th>Probability</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.3%</td>
<td>SBJ PRD OBJ □</td>
</tr>
<tr>
<td>15.6%</td>
<td>SBJ PRD □ OBJ □</td>
</tr>
<tr>
<td>12.3%</td>
<td>□ PRD SBJ OBJ □</td>
</tr>
<tr>
<td>10.3%</td>
<td>SBJ □ PDR OBJ □</td>
</tr>
<tr>
<td>6.5%</td>
<td>□ SBJ PRD OBJ □</td>
</tr>
<tr>
<td>4.1%</td>
<td>SBJ □ PRD □ OBJ □</td>
</tr>
<tr>
<td>3.7%</td>
<td>□ PRD SBJ □ OBJ □</td>
</tr>
<tr>
<td>3%</td>
<td>OBJ PRD SBJ □</td>
</tr>
<tr>
<td>1.7%</td>
<td>□ SBJ PRD □ OBJ □</td>
</tr>
<tr>
<td>1.7%</td>
<td>□ PRD OBJ SBJ □</td>
</tr>
<tr>
<td>1.3%</td>
<td>SBJ □ PRD OBJ □</td>
</tr>
<tr>
<td>1%</td>
<td>□ PRD □ SBJ OBJ □</td>
</tr>
</tbody>
</table>
Parameter 1: Basic Word-Order (Greenberg 1963)

Basic Word-Order Parameter in Swedish:
\[P(< configuration > | \{ \text{SBJ,PRD,OBJ} \} @ S) \]

<table>
<thead>
<tr>
<th>Probability</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.5%</td>
<td>SBJ PRD OBJ □</td>
</tr>
<tr>
<td>18.9%</td>
<td>SBJ PRD □ OBJ □</td>
</tr>
<tr>
<td>13.9%</td>
<td>□ PRD SBJ PBJ □</td>
</tr>
<tr>
<td>8.1%</td>
<td>SBJ PRD OBJ</td>
</tr>
<tr>
<td>4.7%</td>
<td>□ PRD SBJ □ OBJ</td>
</tr>
<tr>
<td>3.5%</td>
<td>OBJ PRD SBJ</td>
</tr>
<tr>
<td>2.6%</td>
<td>SBJ PRD OBJ □</td>
</tr>
<tr>
<td>1.7%</td>
<td>OBJ PRD SBJ COM □</td>
</tr>
<tr>
<td>1.6%</td>
<td>PRD SBJ OBJ □</td>
</tr>
<tr>
<td>1.6%</td>
<td>□ PRD SBJ OBJ</td>
</tr>
<tr>
<td>1%</td>
<td>□ PRD SBJ □ OBJ</td>
</tr>
</tbody>
</table>
Parameter 2: Inflectional Systems

The Object-Marking Parameter in Hebrew: $P(<\text{morphosyntactic representation} >|\text{OBJ@S})$

<table>
<thead>
<tr>
<th>Probability</th>
<th>Realization</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.5%</td>
<td>NP.$\langle NN \rangle$</td>
</tr>
<tr>
<td>14.7%</td>
<td>NP.DEF.ACC.$\langle NN \rangle$</td>
</tr>
<tr>
<td>8.8%</td>
<td>NP.$\langle NNT \rangle$</td>
</tr>
<tr>
<td>7.4%</td>
<td>NP.DEF.ACC.$\langle NNP \rangle$</td>
</tr>
<tr>
<td>6.7%</td>
<td>NP.DEF.ACC.$\langle NN.DEF \rangle$</td>
</tr>
<tr>
<td>6.5%</td>
<td>NP.DEF.ACC.$\langle NNT \rangle$</td>
</tr>
<tr>
<td>5.8%</td>
<td>NP.DEF.ACC.$\langle PRP \rangle$</td>
</tr>
</tbody>
</table>
Parameter 2: Inflectional Systems

The Object-Marking Parameter in Swedish: $P(<\text{morphosyntactic representation}>|\text{OBJ@S})$

<table>
<thead>
<tr>
<th>Probability</th>
<th>Realization</th>
</tr>
</thead>
<tbody>
<tr>
<td>46%</td>
<td>NP.IND.NOM</td>
</tr>
<tr>
<td>20%</td>
<td>NP.DEF.NOM</td>
</tr>
<tr>
<td>13.4%</td>
<td>S</td>
</tr>
<tr>
<td>7.3%</td>
<td>NP.DEF.NOM-OBJ</td>
</tr>
<tr>
<td>4.9%</td>
<td>VP</td>
</tr>
<tr>
<td>3.6%</td>
<td>NP.IND</td>
</tr>
<tr>
<td>2.8%</td>
<td>NP.NOM</td>
</tr>
</tbody>
</table>
Towards Computational Typology and Statistical UG

We can potentially use the RR parameters to...

- Quantify Intra-Language Variation
- Quantify Cross-Linguistic Variation
- Quantify Nonconfigurationality
- Learn Probabilistic P&P
Conclusion

We presented a Relational-Realizational Architecture for Specifying and Learning Morphosyntactic Descriptions

- Simple
- Formal
- Robust
- Implementable
- Interpretable
- Explanatory

Paradigms augmented with realization rules constitute a useful and powerful modeling strategy also for (Morpho)Syntax.
Thank You!

Questions?

For more Information
Relational-Realizational Parsing
Reut Tsarfaty, University of Amsterdam
Swedish Parsing Results Using Gold Standard Input

<table>
<thead>
<tr>
<th></th>
<th>78.65</th>
<th>77.71</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø</td>
<td>78.65</td>
<td>77.71</td>
</tr>
<tr>
<td>(8696)</td>
<td>(10099)</td>
<td></td>
</tr>
<tr>
<td>gender</td>
<td>73.20</td>
<td>78.09</td>
</tr>
<tr>
<td>(11382)</td>
<td>(12593)</td>
<td></td>
</tr>
<tr>
<td>case/def</td>
<td>74.90</td>
<td>79.09</td>
</tr>
<tr>
<td>(11239)</td>
<td>(13912)</td>
<td></td>
</tr>
<tr>
<td>gender/case/def</td>
<td>68.97</td>
<td>77.89</td>
</tr>
<tr>
<td>(13347)</td>
<td>(14991)</td>
<td></td>
</tr>
</tbody>
</table>